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Although SGD 1s the canonical algorithm
for conventional NN, it fails to train
Transformer effectively.

\ Training fails without
\ using warmup
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Removing the warmup phrase results in
more serious consequences.

Transtormer requires non-trivial efforts

What Complicates Transformer Training?




Gradients Vanishing

Unbalanced gradients can hamper the training from the beginning and
has been long regarded as the major reason destabilize model training.

Recent study shows that, even after introducing residual connections,
the Transformer network still suffers from gradient vanishing.




Surprisingly, we
find gradient

vanishing 1s not
the direct reason

Fixing the gradient
vanishing 1ssue alone
cannot stabilize training.

Unbalanced gradients
are largely handled by
adaptive optimizers.
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Difference between the Pre-LLN and the Post-LLN:

Pre-LN variants are more robust. Post-LN variants have a larger potential.
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Gradient Vanishing in Transformer

Since Post-LN suffers from gradient vanishing

and 1s not stable, it is long believed that the
instability comes from gradient vanishing, '\
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Fixing the gradient vanishing 1ssue alone
cannot stabilize training.

Only Post-LLN decoder suffers from gradient
vanishing, but neither Post-LN Encoder, Pre-LN
Encoder, nor Pre-LN Decoder.
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Fixing the gradient vanishing 1ssue alone
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Gradient vanishing only happens in backpropagations for Encoder-Attention sub-layers -
i.e., from Encoder-Attention outputs to Self-Attention outputs. -
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Relative Parameter

Relative Gradient

Unbalanced gradients are largely handled by

Update Norm
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Amplification Effect

Post-LN and Pre-LN aggregates residual branch outputs differently.

For a residual layer x + f(x), we refer f(x) as residual outputs and x + f(x) as layer outputs

pi j integrates all LNs and captures layer dependency.
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p; j integrates LNs and captures layer dependency
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Dependency
on Residual
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Comparing final models, Post-LN layer has a larger dependency on its residual branch.
15

1 1 1 1 1 1 1 1 1 1 1 1
a; Az Az A4 A aAg Ay Ag Ag A1 AINQ12



Large Dependency Destabilizes Training

N
Under some conditions, we have: Var[[F (xq, W) — F(Xq, W + 6)|] ~ z
i=1

/

Model output change. Dependency on its own residual

branch (the weight for i™" residual
outputs in i layer outputs).

Corollary 1. For Pre-LN, Var|F (xg, W) — F(xo, W + )] = O(log N) where N is layer #.

Corollary 2. For Post-LN, Var[F (xo, W) — F (X, W + 8)] = O(N) where N is layer #.



‘]:(XOaW) _}—(XOaW*)‘g

Large dependency destabilizes training
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Large dependency destabilizes training

Why warmup helps to alleviate the instability of Post-LN?

N
Under some conditions, we have: Var|[F (Xq, W) — FXo, W + 6)] = z ,85,-6
—

\

Related to gradient norm

l

However, the difference between O(log N) and O(N) is significant for deep networks (large
N). In our experiments, simply increasing the warmup steps fails to stabilize the training of
deep Transformers successfully.




Model Initialization

We add w; to restrict the layer dependency in the early stage of Post-LN.

X; = fun(by), where b; = X;_1 - w; + f;(X;—1)



Admin --- Adaptive model initialization

We add w; to restrict the layer dependency in the early stage of Post-LN.
X; = fun(bj), where b; = X;_1 - @; + f;(X;-1)

Also, we divide the 1nitialization to two stages:

e Initialize w; as 1, and empirically estimate the variance of Var|[x;];

 Based on estimated variance, initialize w; to ensure Var|F (xq, W) —
F(xo, W + 6)] = O(log N) at initialization.
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Large dependency destabilizes training
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Admin --- Adaptive model initialization

18-Layer Admin (Post-LN) 18-Layer Pre-LN
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- 18-Layer Transformer
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Experiments

Dataset IWSLT’ 14 De-En WMT’ 14 En-Fr WMT’14 En-De

Enc #-Dec # 6L-6L (small) 6L-6L 60L-12L 6L-6L 12L-12L  18L-18L
Post-LN 35.64+0.23 41.29 failed 27.80 failed failed
Pre-LN 35.50+0.04 40.74 43.10 27.27 28.26 28.38
Admin 35.67+0.15 41.47 27.90 28.58 29.03

Without introducing any additional hyper-parameters, it achieves the new state-of-
the-art on WMT’ 14 En-Fr (w.o. additional supervision including back translation).



Experiments

Dataset IWSLT’ 14 De-En WMT’ 14 En-Fr WMT’14 En-De

Enc #-Dec # 6L-6L (small) 6L-6L 60L-12L 6L-6L 12L-12L  18L-18L
Post-LN 35.64+0.23 41.29 failed 27.80 failed failed
Pre-LN 35.50+0.04 40.74 43.10 27.27 28.26 28.38
Admin 35.67+0.15 41.47 43.80 27.90 28.58 29.03

We systematically evaluate deep Admin networks and summarizes results in the following report:

Liu, X., Duh, K., Liu, L., & Gao, J. (2020). Very deep transformers for neural machine translation.

arXiv preprint arXiv:2008.07772.

Highlights: 30.1 BLEU on WMT’ 14 En-De, 46.4 BLEU on WMT’14 En-Fr (w. back-translation)



Experiments

Learning rates
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Take Away

Unbalanced gradient is not the root
cause of the unstable Transformer
training. It 1s largely addressed by
adaptive optimizers.

Large dependencies on residual
branches amplifies the fluctuation
and destabilizes training.

Controlling such dependencies at
initialization, Admin is more stable,
converges faster, and leads to better
performance.
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