

Heterogeneous Supervision for Relation Extraction: A Representation Learning Approach

Liyuan Liu*, Xiang Ren*, Qi Zhu*, Huan Gui*, Shi Zhi*, Heng Ji^o and Jiawei Han*

University of Illinois at Urbana-Champaign, Urbana, IL, USA
 Computer Science Department, Rensselaer Polytechnic Institute, USA

• Goal: acquire structured knowledge from unstructured text

- Formal Definition:
 - Sentence-level relation extraction:
 - Classify a <u>relation mention</u> into a set of <u>relation types of interest</u> or <u>Not-Target-Type</u> (None)

- Formal Definition:
 - Sentence-level relation extraction:
 - Classify a <u>relation mention</u> into a set of <u>relation types of interest</u> or <u>Not-Target-Type</u> (None)

- Supervised Learning:
 - Multi-class classification

- Supervised Learning:
 - Multi-class classification

Dataset with human annotation is the bottleneck

Limited, might even not existed for many domains

Hard to get, and costly

.....

Slow, and sometimes outdated

- Bootstrap learning:
 - Start with a set of seed patterns / annotations, iteratively generate more
 - Suffers from semantic shift

- Distant Supervision:
 - Automatically generate annotations by Knowledge Base

- Distant Supervision:
 - Automatically generate annotations by Knowledge Base
 - ("Obama", "USA", Obama was born in Honolulu, Hawaii, USA as he has always said)
 - Born-in (correct)
 - President-of (wrong).

- Distant Supervision:
 - Automatically generate annotations by Knowledge Base

Distant supervision only encodes KB, while we have more than KB

- Provide a general framework to encode knowledge for supervision:
 - Knowledge Base, domain-specific patterns,
- Labelling functions:

Heterogeneous Supervision & Distant Supervision:

- Heterogeneous Supervision is an extension of Distant Supervision:
 - Both encode external information and provide supervision,
 - Heterogeneous Supervision can encode more.

		КВР	ΝΥΤ		
Information type	# of Relation Types	# of Relation Mentions	# of Relation Types	# of Relation Mentions	
Knowledge Base	7	133955	25	530767	
Domain-specific Patterns	13	225977	16	43820	

Table1. Statistic of Heterogeneous Supervision

Heterogeneous Supervision & Distant Supervision:

- Heterogeneous Supervision is an extension of Distant Supervision:
 - Both encode external information and provide supervision,
 - Heterogeneous Supervision can encode more.

			КВР	ΝΥΤ			
Information type	# of Relation Types		# of Relation Mentions	# of Re	lation Types	# of Relation Mentions	
Knowledge Base		7	133955		25	530767	
Domain-specific Patterns	-	13	225977		16	43820	

Table 1. Statistic of Heterogeneous Supervision

Challenges

- Relation Extraction
- Resolve Conflicts among Heterogeneous Supervision

 λ_4 return died_in for $\langle e_1, e_2, s \rangle$ if match(' * killed in $\overline{*}$ ', s)

ReHession

- Our Solution: A Representation Learning Approach
 - Relation Mention Representation
 - True Label Discovery component
 - Relation Extraction component
- Experiments

• Most simple way: majority voting

- How to resolve conflicts among Heterogeneous Supervision?
 - Works for C3 and C2, but not work for C1

- For more complicated models, several principles have been proposed:
 - Truth Discovery:
 - Some sources (labeling functions) would be more reliable than others
 - Refer the reliability of different sources and the true label at the same time
 - Source Consistency Assumption: a source is likely to provide true information with the same probability for all instances.

- For more complicated models, several principles have been proposed:
 - Truth Discovery:
 - May not fit our scenario very well

- For more complicated models, several principles have been proposed:
 - Truth Discovery:
 - These models are context-agnostic, while context is important for Relation Extraction

- For more complicated models, several principles have been proposed:
 - Truth Discovery:
 - Distant Supervision:
 - Partial-label association has been proposed to resolve conflicts among Distant Supervision, and proved to be effective.

- For more complicated models, several principles have been proposed:
 - Truth Discovery:
 - Distant Supervision:
 - Partial-label association has been proposed to resolve conflicts among Distant Supervision, and proved to be effective.

 $l(z, O_z) = \max\{0, 1 - \left[\max_{r \in O_z} \phi(z, r) - \max_{r' \notin O_z} \phi(z, r')\right]\}$

- For Distant Supervision, all annotations come from Knowledge Base.
- For Heterogeneous Supervision, annotations are from different sources, and some could be more reliable than others.

- To fit our problem, we introduce context awareness to truth discovery, and modified the assumption:
 - A source is likely to provide true information with the same probability for instances *with similar context*.

- To fit our assumption, we add one constraint to labeling functions:
 - each labeling function can annotate *only one* relation type based on *one source* of information
- Reasons:
 - Different information sources often have different reliabilities
 - Some sources annotate different relation types without consistency
 - KB-based labeling function may have higher recall on 'president-of' than 'born-in'

- To fit our assumption, we add one constraint to labeling functions:
 - each labeling function can annotate *only one* relation type based on *one source* of information

return \underline{r} for <e1, e2, s> if \underline{r} (e1, e2) in KB

- To fit our assumption, we add one constraint to labeling functions:
 - each labeling function can annotate *only one* relation type based on *one source* of information

ReHession

- Heterogeneous Supervision
- Our Solution: A Representation Learning Approach
 - Relation Mention Representation
 - True Label Discovery component
 - Relation Extraction component
- Experiments

Heterogeneous Supervision for Relation Extraction

- Relation Extraction:
 - Matching context with proper relation type
- Heterogeneous Supervision:
 - Refer true labels in a context-aware manner

Heterogeneous Supervision for Relation Extraction

- Relation Extraction:
 - Matching *context* with proper relation type .
- Heterogeneous Supervision:
 - Refer true labels in a <u>context</u>-aware manner

context

A Representation Learning Approach

Relation Mention Representation

- Text Feature Extraction
- Text Feature Representation
- Relation Mention Representation

Text Feature Extraction

We adopted texture features, POS-tagging and **brown clustering** to extract features

C3: Hussein was born in Amman on 14 November 1935

.

Feature	Description	Example
Entity mention (EM) head	Syntactic head token of each entity mention	"HEAD_EM1_Hussein",
Entity Mention Token	Tokens in each entity mention	"TKN_EM1_Hussein",
Tokens between two EMs	Tokens between two EMs	"was", "born", "in"
Part-of-speech (POS) tag	POS tags of tokens between two EMs	"VBD", "VBN", "IN"
Collocations	Bigrams in left/right 3-word window of each EM	"Hussein was", "in Amman"
Entity mention order	Whether EM 1 is before EM 2	"EM1_BEFORE_EM2"
Entity mention distance	Number of tokens between the two EMs	"EM_DISTANCE_3"
Body entity mentions numbers	Number of EMs between the two EMs	"EM_NUMBER_0"
Entity mention context	Unigrams before and after each EM	"EM_AFTER_was",
Brown cluster (learned on \mathcal{D})	Brown cluster ID for each token	"BROWN_010011001",

Text Feature Representation

- Leverage features' co-occurrence information to learn the representation, and help the model generalize better.
- Loss function of this part:

Relation Mention Representation

 Here, we adopted the bag-of-features assumption, and add transformation weights to allow representation of relation mention and features to be in different semantic space.

$$\mathbf{z}_c = g(\mathbf{f}_c) = \tanh(W \cdot \frac{1}{|\mathbf{f}_c|} \sum_{f_i \in \mathbf{f}_c} \mathbf{v}_i)$$

- Assume:
 - A labeling function would annotate <u>similar</u> instances with the same reliability

Context Information: **z**

- Assume:
 - A labeling function would annotate similar instances with the same reliability

Context Information: \boldsymbol{z}

for each labeling function, there exists an proficient subset, containing instances that it can precisely annotate.

- How to decide which label is correct?
 - Probability model and maximum likelihood estimate

Corresponding to our assumption and setting

Identify the true label

- Probability Model:
 - Describing the generation of Heterogeneous Supervision?
 - Different from crowdsourcing. E.g., <u>ONE</u> worker may annotate:
 - ("Obama", "USA", Obama was born in Honolulu, Hawaii, USA as he has always said)
 - Born-in
 Cautious Worker
 - President-of
 - Citizen-of
 - ...

Careless Worker

Exists some randomness

- Probability Model:
 - Describing the generation of Heterogeneous Supervision?
 - Different from crowdsourcing. E.g., <u>ONE</u> worker may annotate:
 - ("Obama", "USA", Obama was born in Honolulu, Hawaii, USA as he has always said)
 - Born-in
 - President-of
 - Citizen-of
 - ...
 - But <u>One</u> labeling function can only annotate <u>One</u> relation type:
 - Randomness exists in the correctness, not in the choice of relation type

• Describing the correctness of Heterogeneous Supervision

• Describing the correctness of Heterogeneous Supervision

•
$$p(\rho_{c,i} = 1) = p(\rho_{c,i} = 1 | s_{c,i} = 1) * p(s_{c,i} = 1) + p(\rho_{c,i} = 1 | s_{c,i} = 0) * p(s_{c,i} = 0)$$

•
$$p(s_{c,i} = 1) = \sigma(\mathbf{l}_{i}^{t} * \mathbf{z}_{c})$$

• $\mathcal{J}_{T} = \sum_{o_{c,i} \in \mathcal{O}} \log(\sigma(\mathbf{z}_{c}^{T}\mathbf{l}_{i})\phi_{1}^{\delta(o_{c,i}=o_{c}^{*})}(1-\phi_{1})^{\delta(o_{c,i}\neq o_{c}^{*})}$
 $+ (1-\sigma(\mathbf{z}_{c}^{T}\mathbf{l}_{i}))\phi_{0}^{\delta(o_{c,i}=o_{c}^{*})}(1-\phi_{0})^{\delta(o_{c,i}\neq o_{c}^{*})})$

• Adopts soft-max as the relation extractor:

$$p(r_i | \mathbf{z}_c) = \frac{\exp(\mathbf{z}_c^T \mathbf{t}_i)}{\sum_{r_j \in \mathcal{R} \cup \{\text{None}\}} \exp(\mathbf{z}_c^T \mathbf{t}_j)}$$

• Loss function: KL-Divergence:

$$\mathcal{J}_R = -\sum_{c \in \mathcal{C}_l} KL(p(.|\mathbf{z}_c)||p(.|o_c^*))$$

Model Learning

• Joint optimize three components

$$\min_{W, \mathbf{v}, \mathbf{v}^*, \mathbf{l}, \mathbf{t}, o^*} \mathcal{J} = -\mathcal{J}_R - \lambda_1 \mathcal{J}_E - \lambda_2 \mathcal{J}_T$$

s.t. $orall c \in \mathcal{C}_l, o_c^* = rgmax_{o_c^*} \mathcal{J}_T, \mathbf{z}_c = g(\mathbf{f}_c)$

ReHession

- Heterogeneous Supervision
- Our Solution: A Representation Learning Approach
 - Relation Mention Representation
 - True Label Discovery component
 - Relation Extraction component

Experiments

- 1. Relation extraction (with None) and Relation classification (without None):
 - NL: train relation extractor with all annotations
 - TD: train relation extractor with `true' label inferred by Investment (compared true label discovery model)

Experiments

		I	Relation Classification					
Method	NYT			Wiki-KBP			NYT	Wiki-KBP
	Prec	Rec	F1	Prec	Rec	F1	Accuracy	Accuracy
NL+FIGER	0.2364	0.2914	0.2606	0.2048	0.4489	0.2810	0.6598	0.6226
NL+BFK	0.1520	0.0508	0.0749	0.1504	0.3543	0.2101	0.6905	0.5000
NL+DSL	0.4150	0.5414	0.4690	0.3301	0.5446	0.4067	0.7954	0.6355
NL+MultiR	0.5196	0.2755	0.3594	0.3012	0.5296	0.3804	0.7059	0.6484
NL+FCM	0.4170	0.2890	0.3414	0.2523	0.5258	0.3410	0.7033	0.5419
NL+CoType-RM	0.3967	0.4049	0.3977	0.3701	0.4767	0.4122	0.6485	0.6935
TD+FIGER	0.3664	0.3350	0.3495	0.2650	0.5666	0.3582	0.7059	0.6355
TD+BFK	0.1011	0.0504	0.0670	0.1432	0.1935	0.1646	0.6292	0.5032
TD+DSL	0.3704	0.5025	0.4257	0.2950	0.5757	0.3849	0.7570	0.6452
TD+MultiR	0.5232	0.2736	0.3586	0.3045	0.5277	0.3810	0.6061	0.6613
TD+FCM	0.3394	0.3325	0.3360	0.1964	0.5645	0.2914	0.6803	0.5645
TD+CoType-RM	0.4516	0.3499	0.3923	0.3107	0.5368	0.3879	0.6409	0.6890
REHESSION	0.4122	0.5726	0.4792	0.3677	0.4933	0.4208	0.8381	0.7277

 Table 6: Performance comparison of relation extraction and relation classification

Experiments

- 2. Effectiveness of proposed true label discovery component:
 - Ori: with proposed context-aware true label discovery component
 - LD: with Investment (compared true label discovery model)

Dataset & Method		Prec	Rec	F1	Acc
Wilt KDD	Ori	0.3677	0.4933	0.4208	0.7277
WIKI-NDP	TD	0.3032	0.5279	0.3850	0.7271
NVT	Ori	0.4122	0.5726	0.4792	0.8381
	TD	0.3758	0.4887	0.4239	0.7387

Table 7: Comparison between REHESSION (Ori) and REHESSION-TD (TD) on relation extraction and relation classification

Case Study

Relation Mention	REHESSION	Investment
Ann Demeulemeester (born 1959 ,	born-in	None
Waregem, Belgium) is a		
Raila Odinga was born at, in Maseno,	born-in	None
Kisumu District,		
Ann Demeulemeester (elected 1959,	None	None
Waregem, Belgium) is a		
Raila Odinga was examined at, in	None	None
Maseno, Kisumu District,		

Table 8: Example output of true label discovery. The first two relation mentions come from Wiki-KBP, and their annotations are {born-in, None}. The last two are created by replacing key words of the first two. Key words are marked as bold and entity mentions are marked as Italics.

Thank You

Q & A