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ABSTRACT

Detecting local events (e.g., protest, disaster) at their onsets is an
important task for a wide spectrum of applications, ranging from
disaster control to crime monitoring and place recommendation.
Recent years have witnessed growing interest in leveraging geo-
tagged tweet streams for online local event detection. Nevertheless,
the accuracies of existing methods still remain unsatisfactory for
building reliable local event detection systems. We propose Tri-
oVecEvent, a method that leverages multimodal embeddings to
achieve accurate online local event detection. �e e�ectiveness of
TrioVecEvent is underpinned by its two-step detection scheme.
First, it ensures a high coverage of the underlying local events by
dividing the tweets in the query window into coherent geo-topic
clusters. To generate quality geo-topic clusters, we capture short-
text semantics by learning multimodal embeddings of the location,
time, and text, and then perform online clustering with a novel
Bayesian mixture model. Second, TrioVecEvent considers the
geo-topic clusters as candidate events and extracts a set of fea-
tures for classifying the candidates. Leveraging the multimodal
embeddings as background knowledge, we introduce discrimina-
tive features that can well characterize local events, which enable
pinpointing true local events from the candidate pool with a small
amount of training data. We have used crowdsourcing to evaluate
TrioVecEvent, and found that it improves the performance of the
state-of-the-art method by a large margin.

1 INTRODUCTION

Detecting local events (e.g., disaster, protest, sport game) at their
onsets is in pressing need for many applications. For example, in
disaster control, it is highly important to build a real-time disas-
ter detector that constantly monitors a geographical region. By
sending out timely alarms when emergent disasters outbreak, the
detector can help people take timely actions to alleviate huge life
and economic losses. Another example is public order maintaining.
For local governments, it is desirable to monitor people’s activities
in the city and know about social unrests (e.g., protest, crime) as
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soon as possible. With a detector that discovers social unrests upon
their onsets, the government can respond timely to prevent severe
social riots.

While the task of online local event detection is extremely chal-
lenging years ago due to the lack of data sources, it has been
recently made possible by the proliferation of geo-tagged social
media. As a local event outbreaks, a considerable number of geo-
tagged records (e.g., tweets, Instagram posts) o�en emerge instantly
[1, 10, 22, 24, 32, 44], created by the participants and/or witnesses
who broadcast it right on the spot. Such records, as a result of hu-
man sensing, not only provide a comprehensive view of the event
with multi-dimensional information (location, time, and text), but
also serve as �rst-hand reports because of their real-time nature.

A handful of studies [1, 44] have investigated leveraging geo-
tagged tweet streams for online local event detection. Typically,
they cluster the keywords/tweets in the query window into can-
didate events, and then rank the candidates to select the top-K
locally bursty ones. Despite the compelling results achieved by
these studies, their detection accuracies remain unsatisfactory. For
example, the state-of-the-art method [44] achieves only ∼30% preci-
sion, which is inadequate for building reliable local event detection
systems in practice.

Indeed, online local event detection from continuous geo-tagged
tweet streams is by no means a trivial task. It has several unique
challenges that largely limit the performance of existing methods:
1) Capturing short-text semantics. To e�ectively extract local events,
it is key to carefully capture the text semantics, such that the tweets
discussing about the same event can be grouped. Existing meth-
ods, however, fall short in capturing short-text semantics. �ey
either consider each keyword as an independent item [1], or rely on
measures (e.g., random walk [44]) that could su�er severely from
text sparsity; 2) Filtering uninteresting activities. Many geo-tagged
tweets just re�ect routine activities (e.g., dining, shopping) instead
of any interesting events. To identify true local events, existing
methods rely on heuristic ranking functions to select the top-K
bursty candidates. However, it is hard — if not impossible — to
manually design a gold-standard ranking function for accurate can-
didate �ltering. Worse still, some query windows contain more than
K events, while some (e.g., the early morning) contain no events at
all. �e rigid top-K selection can incur severe detection accuracy
loss due to its in�exibility; and 3) Fast online detection. When a local
event outbreaks, our goal is to report the event instantly to allow
for timely actions. Hence, it is desirable to continuously monitor
the massive geo-tagged tweet stream and report local events on



the �y. Such a requirement renders existing batch-wise detection
methods [8, 22, 36] inapplicable.

We propose TrioVecEvent, an embedding-based detector that
enables accurate online local event detection from continuous geo-
tagged tweet streams. �e foundation of TrioVecEvent is a mul-
timodal embedding learner that maps all the regions, hours, and
keywords into the same space with their correlations preserved. If
two units are highly correlated (e.g., ‘Pats’ and ‘Patriots’, or the 5th
Ave region and the keyword ‘shopping’), their representations in
the latent space tend be close. Such multimodal embeddings not
only allow us to capture the subtle semantic similarities between
tweets, but also serve as background knowledge by revealing the
typical keywords in di�erent regions and hours.

Built upon the multimodal embeddings, TrioVecEvent employs
a two-step scheme to achieve high detection accuracy. First, it per-
forms online clustering to divide the tweets in the query window into
coherent geo-topic clusters. We develop a novel Bayesian mixture
model that jointly models the tweet locations in the Euclidean space
and the semantic embeddings in the spherical space. �e model
can generate quality candidates to ensure a high coverage of the
underlying events. Second, it extracts a set of discriminative fea-
tures for accurate candidate classi�cation. Based on the multimodal
embeddings, we design features that can well characterize local
events, which enable pinpointing true positives from the candi-
date pool with a small amount of training data. Compared with
existing top-K candidate selection schemes, the classi�cation-based
candidate �ltering not only frees us from designing heuristic rank-
ing functions, but also eliminates the in�exibility of rigid top-K
selection. Furthermore, as the query window shi�s continuously,
TrioVecEvent does not need to detect the local events in the new
window from scratch, but just needs to update the previous results
with li�le cost to enable fast online detection.

Our main contributions are summarized as follows:

(1) We develop a multimodal embedding learner that jointly
maps the location, time, and text into the same latent space
with their correlations preserved. �e multimodal embed-
dings not only capture the subtle semantics of tweet mes-
sages, but also serve as background knowledge to extract
discriminative features for candidate �ltering.

(2) We propose a novel Bayesian mixture clustering model that
�nds geo-topic clusters as candidate events. It generates
quality geo-topic clusters without specifying the number
of clusters a priori, and continuously updates the clustering
results as the query window shi�s.

(3) We design an e�ective candidate classi�er that judges
whether each candidate is indeed a local event. Relying on
the multimodal embeddings, we extract a set of discrimi-
native features for the candidates, which enable training a
reliable classi�er with a small amount of training data.

We have performed extensive experiments on two large-scale
geo-tagged tweet data sets. Our e�ectiveness studies based on
crowdsourcing show that TrioVecEvent improves the detection
precision of the state-of-the-art method [44] by a large margin.
Meanwhile, TrioVecEvent demonstrates excellent e�ciency, mak-
ing it suitable to be deployed for monitoring large geo-tagged tweet
streams in practice.

2 RELATEDWORK

In this section, we review existing work related to our problem,
including: (1) event detection and forecasting; and (2) geo-tagged
social media mining.

2.1 Event Detection and Forecasting

2.1.1 Global Event Detection. A larger number of methods have
been proposed for extracting global events that are bursty in the
entire data stream. Generally, existing global event detection ap-
proaches can be classi�ed into two categories: document-based and
feature-based. Document-based approaches [3, 4, 33] consider each
document as a basic unit. �ey group similar documents into clus-
ters and then �nd the bursty ones as events. For instance, Allan
et al. [4] perform online clustering and use a similarity threshold
to determine whether a new document should form a new topic
or be merged into an existing one; Aggarwal et al. [3] also de-
tect events via online clustering, but with a similarity measure
that considers both tweet content relevance and user proximity;
Sankaranarayanan et al. [33] train a Naı̈ve Bayes �lter to obtain
news-related tweets and cluster them based on TF-IDF similarity.
Feature-based approaches [17, 20, 23, 26, 37] identify a set of bursty
features (e.g., keywords) and cluster them to form events. Vari-
ous techniques for extracting bursty features have been proposed,
such as Fourier transform [17], Wavelet transform [37], and phrase-
based burst detection [14, 23]. For example, Fung et al. [13] model
feature occurrences with binomial distribution to extract bursty
features; He et al. [17] construct the time series for each feature
and perform Fourier Transform to identify bursts; Weng et al. [37]
use wavelet transform and auto-correlation to measure word en-
ergy and extract high-energy words; Li et al. [23] segment each
tweet into meaningful phrases and extract bursty phrases based on
frequency; Giridhar et al. [14] extract an event as a group of tweets
that contain at least one pair of bursty keywords.

�e above methods are all designed for detecting globally bursty
events. A local event, however, is usually bursty in a local region
instead of the entire stream. Hence, directly applying these methods
to our problem can miss many local events.

2.1.2 Local Event Detection. Local event detection has been
receiving increasing research interest in the past few years [1, 8,
11, 12, 22, 30, 32, 44]. Watanabe et al. [36] and �ezada et al. [30]
extract location-aware events in the social media, but their focus is
on geo-locating the tweets/events. Sakaki et al. [32] achieve real-
time earthquake detection, by training a classi�er to judge whether
an incoming tweet is earthquake-related. Li et al. [24] detect crime
and disaster events (CDE) with a self-adaptive crawler for CDE-
related tweets. Our work di�ers from these studies in that we aim
to detect all kinds of local events, whereas they focus on speci�c
event types. �ite a few generic local event detection methods
have been proposed [1, 8, 22, 44]. Chen et al. [8] use Wavelet
transform to extract spatiotemporally bursty Flickr tags, and then
cluster them based on their co-occurrences and spatiotemporal
distributions. Krumm et al. [22] discretize the time into equal-size
bins and compare the number of tweets in the same bin across
di�erent days to extract local events.

Nevertheless, the above methods can only handle static data
and detect local events in batch. While online methods have been



gaining increasing a�ention in the data mining community [7,
18, 25, 39], few methods exist for supporting online local event
detection. To the best of our knowledge, there are only two studies
that have investigated the online local event detection problem [1,
44]. Abdelhaq et al. [1] �rst extract bursty and localized keywords in
the query window, then cluster such keywords based on their spatial
distributions, and �nally select the top-K locally bursty clusters.
Zhang et al. [44] detect geo-topic clusters based on random walk,
and later rank these clusters to select spatiotemporally bursty ones.
While these two methods support online local event detection, their
accuracies are limited because of two reasons: 1) the clustering step
does not capture short-text semantics well; and 2) the candidate
�ltering e�ectiveness is limited by heuristic ranking functions and
the in�exibility of top-K selection.

2.1.3 Local Event Forecasting. Local event forecasting is another
line of research that is related to our problem. Foley et al. [12]
use distant supervision to extract future local events from Web
pages, but the proposed method can only extract local events that
are well advertised in advance on the Web. Zhao et al. [45–47]
formulate local event forecasting as a binary prediction problem,
i.e., predicting whether a speci�c type of event (e.g., civil unrest)
will occur on a given day. �eir methods combine social media
with other data sources (e.g., gold standard report, news articles) to
train reliable predictors. Our problem is orthogonal to their studies
in that, instead of performing binary prediction for a speci�c event
type, we a�empt to extract all types of local events at their onsets.

2.2 Geo-Tagged Social Media Mining

�e emergence of geo-tagged social media has enabled progresses
in various location-based mining tasks besides local event detec-
tion, including location recommendation [35], link prediction [9],
mobility modeling [43], and spatiotemporal activity modeling [42].
Among such tasks, spatiotemporal activity modeling is mostly re-
lated to the local event detection problem, thus we detail existing
approaches to it in the following.

Spatiotemporal activity modeling aims at detecting the typical
activities in di�erent geographical regions [6, 16, 21, 34]. Early ap-
proaches incorporate spatiotemporal information into classic topic
models for this problem. In particular, Sizov et al. [34] extend LDA
[6] by assuming each latent topic has a multinomial distribution
over text and two Gaussians over latitudes and longitudes; Yin et al.
[40] extend PLSA by assuming each region has a Gaussian distribu-
tion that generates locations, as well as a multinomial distribution
over the latent topics that generate text; Guo et al. [16] use Dirichlet
Process to extract activities that freely span several regions and
peak multiple time periods; Hong et al. [19] and Yuan et al. [41]
introduce the user factor in the modeling process to capture user
preferences. Recently, representation learning has a�racted much
a�ention for mobile data mining tasks [38, 42, 48]. Among them,
Zhang et al. [42] propose a multimodal representation learning
method for the spatiotemporal activity modeling problem. By em-
bedding geographical regions, time periods, and keywords into the
same latent space, the proposed approach is capable of capturing
their cross-modal correlations and outperforming previous geo-
graphical topic models. Although spatiotemporal activity modeling
and local event detection are two closely related tasks, there is a

clear di�erence between them. �e former a�empts to summarize
the typical activities in di�erent regions, whereas the la�er aims at
detecting unusual activities bursted in local areas.

3 PRELIMINARIES

3.1 Problem Description

Let D = (d1,d2, . . . ,dn , . . .) be a continuous stream of geo-tagged
tweets that arrive in chronological order. Each tweet d is a tuple
〈td , ld ,xd 〉, where td is its post time, ld is its geo-location, and xd is
a bag of keywords that denote the tweet message. Consider a query
time window Q = [ts , te ] where ts and te are the start and end
timestamps satisfying td1 ≤ ts < te ≤ tdn . �e online local event
detection problem aims at extracting all the local events that occur
duringQ and updating the event list online asQ shi�s continuously.

3.2 �e Framework of TrioVecEvent

A local event o�en results in relevant tweets around its occurring
location. For example, suppose a protest occurs at the JFK Airport
in New York City, many participants post tweets on the spot to
express their a�itude, with keywords like ‘protest’ and ‘rights’.
Such tweets form a geo-topic cluster as they are geographically
close and semantically relevant. However, not necessarily does
every geo-topic cluster correspond to a local event. It is because a
geo-topic cluster may correspond to just routine activities in the
region, e.g., taking �ights at JFK, shopping at the 5th Ave, etc.. We
claim that a local event o�en leads to a bursty and unusual geo-topic
cluster. �e cluster is bursty in that it consists of a considerable
number of tweets, and unusual in that its semantics deviates from
routine activities signi�cantly.

Motivated by the above, we design an embedding-based detec-
tion method TrioVecEvent. At the foundation of TrioVecEvent
is a multimodal embedding learner [42] that maps all the regions,
hours, and keywords into a latent space. If two units are highly
correlated (e.g., ‘�ight’ and ‘airport’, or the JFK Airport region and
the keyword ‘�ight’), their embeddings in the latent space tend
be close. Figure 1 shows two real examples in Los Angeles and
New York City, where we learn multimodal embeddings using mil-
lions of geo-tagged tweets in these cities and perform similarity
searches. One can see that given the example queries, the multi-
modal embeddings well capture the correlations between di�erent
units. �e usage of such embeddings is two-fold: 1) they allow us to
capture the semantic similarities between tweets and further group
the tweets into coherent geo-topic clusters; and 2) they reveal the
typical keywords appearing in di�erent regions and hours, which
serve as background knowledge to help identify unusual and bursty
geo-topic clusters.

Figure 2 shows the framework of TrioVecEvent. As shown, the
embedding learner embeds the location, time, and text using mas-
sive data from the geo-tagged tweet stream. It maintains a cache
for keeping newly arrived tweets and updating the embeddings
periodically. Based on the multimodal embeddings, TrioVecEvent
employs a two-step detection scheme: 1) in the online clustering
step, we develop a Bayesian mixture model that jointly models geo-
graphical locations and semantic embeddings to extract coherent
geo-topic clusters in the query window; 2) in the candidate clas-
si�cation step, we extract a set of discriminative features for the
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Figure 1: Example similarity queries based on the multimodal embeddings learned from the geo-tagged tweets in Los Angeles and New York

City. In each city, the �rst query retrieves regions relevant to the keyword ‘beach’; the second retrieves keywords relevant to the airport

location; and the last three retrieve relevant keywords for the given query keywords. For each query, we use the learned embeddings to

compute the cosine similarities between di�erent units, and retrieve the top ten most similar units without including the query itself.

candidates and determine whether each candidate is a true local
event.
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Figure 2: �e framework of TrioVecEvent.

Now the key questions about TrioVecEvent are: 1) how to
generate embeddings that can well capture the correlations between
di�erent units? 2) how do we perform online clustering to obtain
quality geo-topic clusters inQ? and 3) what are the features that can
discriminate true local events from non-events? In what follows,
we introduce the multimodal embedding learner in Section 4, and
then describe the two-step detection process of TrioVecEvent in
Section 5.

4 MULTIMODAL EMBEDDING

�e multimodal embedding module jointly maps all the spatial,
temporal, and textual units into the same low-dimensional space
with their correlations preserved. While the keywords are natural
textual units for embedding, the space and time are are continuous
and there are no natural embedding units. To address this issue, we
break the geographical space into equal-size regions (300m*300m)
and consider each region as a spatial unit. Similarly, we break one
day into 24 hours and consider every hour as a basic temporal unit.

�e multimodal embedding learner consumes the continuous
tweet stream and learns D-dimensional representations for all the
regions, hours, and keywords. As aforementioned, we maintain a
cacheC for keeping newly arrived tweets, and use it to periodically
update the embeddings. To e�ectively incorporate the information
in C without over��ing, we take the embeddings learned before
the arrival of C as initialization, and optimize the embeddings over
C for one full epoch. Such a simple strategy e�ciently incorporates

the tweets in the cacheC , while largely preserving the information
in the historical stream.

Our embedding procedure is inspired by the CBOW model [27]
that predicts one unit given its context. Speci�cally, given a tweet d ,
for any unit i ∈ d with type X (region, hour, or keyword), let vi be
the embedding of unit i , then we model the likelihood of observing
i as

p (i |d−i ) = exp(s (i,d−i ))/
∑
j ∈X

exp(s (j,d−i )),

where d−i is the set of all the units in d except i; and s (i,d−i ) is the
similarity score between i and d−i , de�ned as

s (i,d−i ) = vT
i

∑
j ∈d−i

vj/|d−i |.

For a cacheC of geo-tagged tweets, the objective is to predict all
the units of the tweets in C:

JC = −
∑
d ∈C

∑
i ∈d

logp (i |d−i ).

To e�ciently optimize the above objective function, we follow
the idea of negative sampling [27] and use stochastic gradient de-
scent (SGD) for updating. At each time, we randomly sample a
tweet d from C and a unit i ∈ d . With negative sampling, we ran-
domly select K negative units that have the same type with i but
do not appear in d . �en we minimize the following function for
the selected samples:

Jd = − logσ (s (i,d−i )) −
K∑
k=1

logσ (−s (k,d−i )),

where σ (·) is the sigmoid function. �e updating rules for di�erent
variables can be easily derived by taking the derivatives of the
above objective and then applying SGD, we omit the details here
due to the space limit.

5 TWO-STEP LOCAL EVENT DETECTION

In this section, we describe the two-step detection process of Tri-
oVecEvent. We �rst develop a Bayesian mixture clustering model
in Section 5.1, and then design a candidate classi�er in Section 5.2.
For clarity, Table 1 summarizes the notations used in this section.



Table 1: �e notations used in Section 5.

X the set of semantic embeddings for the tweets in Q
Z the set of cluster memberships for the tweets in Q
L the set of geo-location vectors for the tweets in Q
κ the set of κ for all the clusters

κ¬k the subset of κ excluding the one for cluster k
A¬d the subset of any set A excluding element d
Ak the subset of elements that are assigned to cluster k in set A
xk the sum of the semantic embeddings in cluster k

xk,¬d the sum of the semantic embeddings in cluster k excluding d
nk the number of tweets in cluster k

nk,¬d the number of tweets in cluster k excluding d

5.1 Candidate Generation

5.1.1 A BayesianMixture ClusteringModel. We develop a Bayesian
mixture clustering model to divide the tweets in the query window
Q into a number of geo-topic clusters, such that the tweets in the
same cluster are geographically close and semantically relevant. We
consider each tweet d as a tuple (ld , xd ). Here, ld is a 2-dimensional
vector denoting d’s geo-location; and xd is the D-dimensional se-
mantic embedding of d , derived by averaging the embeddings of
the keywords in d’s message.

�e key idea behind our model is that every geo-topic cluster im-
plies a coherent activity (e.g., protest) around a certain geo-location
(e.g., the JFK Airport). �e location acts as a geographical center
that triggers geo-location observations around it in the Euclidean
space; while the activity serves as a semantic focus that triggers
semantic embedding observations around it in the spherical space.
We assume there are at most K geo-topic clusters in the query win-
dow Q . Note that assuming the maximum number of clusters is a
weak assumption that can be readily met in practice. At the end of
the clustering process, some of these K cluster may become empty.
As such, the appropriate number of clusters in any ad-hoc query
window can be automatically discovered.

↵ ⇡

zd

xd ld
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m0

|Q|K
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�0

K

Figure 3: �e graphical model of geo-topic clustering.

Figure 3 shows the generative process for all the tweets in the
query window Q . As shown, we �rst draw a multinomial distri-
bution π from a Dirichlet prior Diri�let(.|α ) [28]. Meanwhile,
for modeling the geo-locations, we draw K normal distributions
from a Normal-Inverse-Wishart (NIW) prior NIW(.|η0, λ0, S0,υ0)
[28], which is a conjugate prior of the normal distribution; and for
modeling the semantic embeddings, we draw K von Mises-Fisher

(vMF) distributions from its conjugate prior Φ(µ,κ |m0,R0, c ) [29].
For each tweet d ∈ Q , we �rst draw its cluster membership zd
from π . Once the cluster membership is determined, we draw its
geo-location ld from the respective normal distribution, and its
semantic embedding xd from the respective vMF distribution.

While using normal distributions for modeling the geo-location
ld is intuitive, we justify the choice of the vMF distribution for mod-
eling the semantic embedding xd as follows. For a D-dimensional
unit vector x that follows vMF distribution, its probability density
function is given by

p (x|µ,κ) = CD (κ) exp(κµT x),

whereCD (κ) = κD/2−1

ID/2−1 (κ )
and ID/2−1 (κ) is the modi�ed Bessel func-

tion. �e vMF distribution has two parameters: the mean direction
µ (µ = 1) and the concentration parameter κ (κ > 0). �e dis-
tribution of x on the unit sphere concentrates around the mean
direction µ, and is more concentrated if κ is large. Our choice
of the vMF distribution is motivated by the e�ectiveness of the
cosine similarity [27, 42] in quantifying the similarities between
multimodal embeddings. �e mean direction µ acts as a semantic
focus on the unit sphere, and produces relevant semantic embed-
dings around it, where concentration degree is controlled by the
parameter κ. �e superiority of the vMF distribution over other
alternatives (e.g., Gaussian) for modeling textual embeddings has
also been demonstrated in recent studies on clustering [15] and
topic modeling [5].

To summarize the above generative process, we have:

π ∼ Diri�let(.|α )
{ηk , Σk } ∼ NIW(.|η0, λ0, S0,υ0) k = 1, 2, . . . ,K
{µk ,κk } ∼ Φ(.|m0,R0, c ) k = 1, 2, . . . ,K
zd ∼ Categorical(.|π ) d ∈ Q

ld ∼ N (.|ηzd , Σzd ) d ∈ Q

xd ∼ vMF(.|µzd ,κzd ) d ∈ Q

where Λ = {α ,m0,R0, c,η0, λ0, S0,υ0} are the hyper-parameters for
the prior distributions.

5.1.2 Parameter Estimation. �e key to obtain the geo-topic
clusters is to estimate the posterior distributions for {zd }d ∈Q . We
use Gibbs sampling for this purpose. Since we have chosen con-
jugate priors for π and {µk ,ηk , Σk }Kk=1, these parameters can be
integrated out during the Gibbs sampling process, resulting in a
collapsed Gibbs sampling procedure. Due to the space limit, we
directly give the conditional probabilities for {κk }Kk=1 and {zd }d ∈Q :

p (κk |κ
¬k ,X,Z,α ,m0,R0, c ) ∝

(CD (κk ))
c+nk

CD (κk ‖R0m0 + xk ‖)
, (1)

p (zd = k |X,L,Z
¬d ,κ ,Λ) ∝ p (zd = k |Z

¬d ,α )·

p (xd |X
¬d ,Z¬d , zd = k,Λ) · p (ld |L

¬d ,Z¬d , zd = k,Λ). (2)



�e three quantities in Equation 2 are given by:

p (zd = k |·) ∝(n
k,¬d + α ), (3)

p (xd |·) ∝
CD (κk )CD (‖κk (R0m0 + xk,¬d )‖2)
CD (‖κk (R0m0 + xk,¬d + xd )‖2)

, (4)

p (ld |·) ∝
λk,¬d (υk,¬d − 1) |SLk∩L¬d |υk,¬d /2

2(λk,¬d + 1) |SLk∪{ld } | (υk,¬d+1)/2
, (5)

where λ ·, υ ·, and S· are the posterior estimations for the parameters
of the NIW distribution [28].

From Equation 2, 3, 4, and 5, we observe that our Bayesian
mixture model enjoys several nice properties when determining
the cluster membership for a tweet d : 1) With Equation 3, d tends
to join a cluster that has more members, resulting in a rich-get-
richer e�ect; 2) With Equation 4, d tends to join a cluster that is
more semantically similar to its textual embedding xd , leading to
semantically coherent clusters; and 3) With Equation 5, d tends to
join a cluster that is more geographically close to its geo-location
ld , resulting in geographically compact clusters.

5.1.3 Incremental Updating. When the query window Q shi�s,
it is undesirable to re-compute the geo-topic clusters in the new
query window from scratch for the purpose of fast online de-
tection. We employ an incremental updating strategy that e�-
ciently approximates the clustering results in the new window.
As shown in Figure 4, assume the query window shi�s from Q
to Q ′, we denote by D− = {d1, . . . ,dm } the outdated tweets, and
D+ = {dn−k+1, . . . ,dn } the new tweets. Instead of performing
Gibbs sampling for all the tweets in Q ′, we simply drop D− and
sample the cluster memberships for the tweets in D+. Such an
incremental updating strategy achieves excellent e�ciency and
yields quality geo-topic clusters in practice as the memberships of
the remaining tweets are mostly stable.

…

…

…

Goodbye, you were cool when it was just about hockey.

…

…

…

3 hour dance audition = well deserved margaritas

Just leaving movie theaters tonight. It was cool tho.

…
I swear I’m acting cold hearted.

…

The way tv shows portray to high school student 
 is always wrong.

…

…

…

…

Q

Q0

dm+1

d1

dm

dn�k

dn tn

tn�k

tm+1

tm

t1 l1

lm

lm+1

ln�k

ln
D+

D�

Figure 4: Incremental updating as the query window shi�s.

5.2 Candidate Classi�cation

We have so far obtained a set of coherent geo-topic clusters in
the query window as candidates. Now we proceed to describe the
candidate classi�er for pinpointing the true local events. �e key
is to de�ne a set of features that can well discriminate true local
events from non-events. We introduce the following set of features
for this purpose:
(1) Spatial unusualness quanti�es how unusual a candidate is

in its geographical region. As the multimodal embeddings can
unveil the typical keywords in di�erent regions, we use them as
background knowledge to measure the spatial unusualness of a

candidateC . Speci�cally, we compute the spatial unusualness as
fsu (C ) =

∑
d ∈C cos(vld , xd )/|C |, where vld is the embedding

of the region of tweet d , and xd is the semantic embedding of
tweet d .

(2) Temporal unusualness quanti�es how temporally unusual
a candidate is. We de�ne the temporal unusualness of a can-
didate C as ftu (C ) =

∑
d ∈C cos(vtd , xd )/|C |, where vtd is the

embedding of the hour of tweet d .
(3) Spatiotemporal unusualness jointly considers the space and

time to quantify how unusual a candidate C is: fstu (C ) =∑
d ∈C cos((vld + vtd )/2, xd )/|C |.

(4) Semantic concentration computes how semantically coher-
entC is: fsu (C ) =

∑
d ∈C cos(xd , xd )/|C |, where xd is the aver-

age semantic embedding of the tweets in C .
(5) Spatial and temporal concentrations quantify how concen-

trated a candidate C is over the space and time. We compute
three quantities for the tweets in C: 1) the standard deviation
of the longitudes; 2) the standard deviation of the latitudes; and
3) the standard deviation of the creating timestamps.

(6) Burstiness quanti�es how bursty a candidate C is. We de�ne
it as the number of tweets in C divided by the time span of C .

�e Classi�cation Procedure. To summarize, for each candidate
C , we extract the following features: 1) the spatial unusualness;
2) the temporal unusualness; 3) the spatiotemporal unusualness;
4) the semantic concentration; 5) the longitude concentration; 6)
the latitude concentration; 7) the temporal concentration; and 8)
the burstiness. With the above features, we use logistic regression
to train a binary classi�er and judge whether each candidate is
indeed a local event. We choose the logistic regression classi�er
because of its robustness when there is limited training data. We
have also tried other classi�ers like Random Forest, and �nd that the
logistic regression classi�er has slightly be�er performance in our
experiments. �e training instances are collected over 100 query
windows in a crowdsourcing platform. We will shortly describe the
labeling process in Section 6.

5.3 Complexity Analysis

We analyze the time complexities of the candidate generation step
and the candidate classi�cation step separately. For candidate gen-
eration, to extract geo-topic clusters in the new query window, the
time complexity is O (INKD), where I is the number of Gibbs sam-
pling iterations, N is the number of new tweets, K is the maximum
number of clusters; and D is the latent embedding dimension. Note
that I , K and D are usually �xed to moderate values in practice,
thus the candidate generation step scales roughly linearly with
N and has good e�ciency. For candidate classi�cation, the major
overhead lies in feature extraction. Let Nc be the maximum number
of tweets in each candidate, then the time complexity of feature
extraction is O (KNcD).

6 EXPERIMENTS

6.1 Experimental Settings

6.1.1 Baselines. We compare TrioVecEvent with all the ex-
isting online local event detection methods that we are aware of,
described as follows:



• EvenTweet [1] extracts bursty and localized keywords from the
query window, then clusters these keywords based on spatial
distributions, and �nally selects top-K locally bursty clusters.

• GeoBurst [44] is the state-of-the-art method for online local
event detection. It �rst uses random walk on a keyword co-
occurrence graph to detect geo-topic clusters, and then ranks all
the clusters by the weighted combination of spatial burstiness
and temporal burstiness.

• GeoBurst+ is an upgraded version of GeoBurst by replacing
the ranking module with a classi�er. Instead of heuristically rank-
ing the candidates, we train a classi�er to determine whether
each candidate is a local event. �e used features include spa-
tial burstiness, temporal burstiness [44], as well as spatial and
temporal concentrations (Section 5.2).

6.1.2 Parameters. As EvenTweet and GeoBurst both perform
top-K selection to identify local events from the candidate pool,
we set K = 5 for them to achieve a tradeo� between precision and
recall. Meanwhile, EvenTweet requires to partition the whole
space into M × M small grids. A�er tuning, we set M = 50. In
GeoBurst and GeoBurst+, there are three additional parameters:
the kernel bandwidth h; (2) the restart probability α ; and (3) the
RWR similarity threshold δ . Following the original paper [44], we
set them as h = 0.01,α = 0.2, and δ = 0.02. All the baseline
methods require a reference window that precedes the query to
quantify the burstiness of the candidates, we follow [44] and set
the reference duration to one week.

TrioVecEvent involves the following major parameters: (1) the
latent dimension D for embedding; and (2) the maximum number
of clusters K ; and (3) the number of Gibbs sampling iterations I .
A�er tuning, we set D = 100, K = 500, and I = 10, as we �nd such a
se�ing can produce geo-topic clusters that are �ne-grained enough
while achieving good e�ciency. In addition, the Bayesian mixture
model involves several hyper-parameters, as shown in Figure 3. In
general, we observe that our model is not very sensitive to them.
We set α = 1.0, c = 0.01,R0 = 0.01,m0 = 0.1 · 1, λ0 = 1.0,η0 =
0,υ0 = 2.0, S0 = 0.01 ·I, which are commonly adopted values for the
prior distributions used in our model. We conduct the experiments
on a computer with Intel Core i7 2.4GHz CPU and 8GB memory.

6.1.3 Data Sets and Groundtruth. Our experiments are based
on the same data sets as in [44]. �e �rst data set LA consists of
the geo-tagged tweets in Los Angeles collected during 2014.08.01 —
2014.11.30; and the second data set NY consists of the geo-tagged
tweets in New York City during the same period. For each data set,
we use an o�-the-shelf tool [31] to preprocess the text messages by
preserving entities and nouns, and then remove the keywords that
appear less than 100 times in the entire corpus.

To evaluate the methods and collect training data for GeoBurst+
and TrioVecEvent, we randomly generate 200 non-overlapping
query windows with four di�erent lengths: 3-hour, 4-hour, 5-hour,
and 6-hour. A�er ranking these windows in chronological order,
we run each the method online by shi�ing a �xed-length (3h, 4h, 5h,
6h) query window on a 5-minute basis, and save the results falling
in each target query window. A�er collecting labeled data with
crowdsourcing, we use the groundtruth in the �rst 100 windows
for training the classi�ers of GeoBurst+ and TrioVecEvent; and
that in the rest 100 windows for comparing all the methods.

Now we describe the labeling process based on crowdsourcing.
For all the methods, we upload their results to CrowdFlower1 for
human judging. Since EvenTweet and GeoBurst are top-K meth-
ods with K = 5, we upload �ve results for each of them in each
query window. GeoBurst+ and TrioVecEvent are classi�cation-
based methods, and the raw numbers of candidate events could
be large. To limit the number of candidates while ensuring the
coverages of the two methods, we employ a simple heuristic for
eliminating negative candidates. It removes the candidates that
have too few users (i.e., the number of users is less than �ve) or
too dispersed spatial distributions (i.e., the longitude or latitude
standard deviation is larger than 0.02). A�er �ltering such trivial
negatives, we upload the remaining candidates for evaluation.

On CrowdFlower, we represent each event with �ve tweets
and ten keywords, and ask three CrowdFlower workers to judge
whether the event is indeed a local event. To ensure the quality
of the workers, we label 20 queries as groundtruth judgments on
each data set, such that only the workers who can achieve no less
than 80% accuracy on the groundtruth can submit their answers.
Finally, we use majority voting to aggregate the workers’ answers.
�e representative tweets and keywords are selected as follows:
(1) For GeoBurst and GeoBurst+, we select �ve tweets having
the largest authority scores, and ten keywords having the largest
TF-IDF weights. (2) EvenTweet represents each event as a group
of keywords. We select ten keywords with the highest scores in
each event. �en we regard the group of keywords as a query to
retrieve the top �ve most similar tweets using the BM25 retrieval
model. (3) TrioVecEvent represents a candidate as a group of
tweets. We �rst compute the average semantic embedding, and
then select the closest keywords and tweets using cosine similarity.

6.1.4 Metrics. As aforementioned, we use the groundtruth in
the last 100 query windows to evaluate all the methods. To quantify
the performance of all the methods, we report the following metrics:
(1) Precision. �e detection precision is P = Ntrue/Nreport, where
Ntrue is the number of true local events and Nreport is the total
number of reported events. (2) Pseudo Recall. �e true recall is hard
to measure due to the lack of the comprehensive set of events in
the physical world. We thus measure the pseudo recall for each
method. Speci�cally, for each query window, we aggregate the
true positives of di�erent methods. Let Ntotal be the total number
of distinct local events detected by all the methods; we compute
the pseudo recall of each method as R = Ntrue/Ntotal. (3) Pseudo
F1-Score. Finally, we also report the pseudo F1 score of each method,
which is computed as F1 = 2 ∗ P ∗ R/(P + R).

6.2 Illustrative Cases

Before reporting the quantitative results, we �rst present several
examples for TrioVecEvent. Figure 5 and 6 show several exempli-
fying geo-topic clusters detected by TrioVecEvent on LA and NY,
respectively. For each cluster, we plot the locations of the member
tweets and show the top �ve representative tweets. �e clusters in
Figure 5(a) and 5(b) correspond to two positive local events in LA:
1) a protesting rally held at the LAPD Headquarter for making voice
for Mike Brown and Ezell Ford; and 2) Katy Perry’s concert at the
Staples Center. For each event, one can see the generated geo-topic
1h�p://www.crowd�ower.com/



• Standing for justice! @ LAPD Headquarters http://t.co/YxNUAloQcE
• At the LAPD protest downtown #EzellFord #MikeBrown http://t.co/

kWphv6dXOr
• Hands Up. Don't Shoot. @ Los Angeles City Hall
• Black, Brown, poor white, ALL oppressed people unite. #ftp #lapd 

#ferguson #lapd #mikebrown #ezellford http://t.co/szf3mJRJwV
• Finished marching now gathered back at LAPD police as organizers 

speak some truth #EzellFord #MikeBrown #ferguson http://t.co/
M33n9IMOzC

(a) LA local event I: a protest rally at the LAPD Headquarter.

• Thanks for making my Teenage Dreams come true @arjanwrites!! 
AHHH @KATYPERRY!! (at @STAPLESCenter for Katy Perry) 
https://t.co/TVEaghr1Tt

• Katy perry with my favorite. http://t.co/FpfPYAQNBR
• @MahoganyLOX are you at the Katy perry concert?
• One of the beeeeest concerts in history!
• My two minutes of fame was me and my friends picture getting put on 

the TV screens at the Katy Perry concert.

(b) LA local event II: Katy Perry’s concert at the Staples Center.

▪ #beachlife @ Long Beach Shoreline Marina
▪ Downtown LB at night #DTLB #LBC #Harbor @ The Reef Restaurant
▪ Jambalaya @ California Pizza Kitchen at Rainbow Harbor http://t.co/

9XbDhQAVsN
▪ #coachtoldmeto @ Octopus Long Beach http://t.co/lYQc8u2m1F
▪ El Sauz tacos are the GOAT.

(c) LA non-event: enjoying beach life at the Long Beach.

Figure 5: Example geo-topic clusters on LA. �e �rst two are clas-

si�ed as positive local events and the third as negative.

• Hoboken Fall Arts & Music Festival with bae @alli_holmes93 @ 
Washington St. Hoboken

• On Washington Street. (at Hoboken Music And Arts Festival) 
https://t.co/YbLSdZhLZV

• Sweeeeet. Bonavita Guitars, at the Hoboken festival. http://t.co/
2Cw1Qz4UGo

• I'm at Hoboken Music And Arts Festival in Hoboken, NJ https://t.co/
i4bSM3mrjb

• It's a festy music day.

(a) NY local event I: the Hoboken Music and Arts Festival in Hoboken, NJ.

• Knicks game w literally a person. http://t.co/hxVYidpCzs
• Knicks game with my main man.
• It has been one of my dream to watch NBA game!! Let's go! http://

t.co/GRJRvFw6vd 
• Watching @nyknicks at @TheGarden for for the first time! Go Knicks! 

#nyk4troops 
• I was outside of msg today pretending I liked the Knicks. It's that bad. 

(b) NY local event II: �e Knicks’ basketball game at the Madison Square Garden.

• Happiness is a shroom burger from Shake Shack. @ Shake Shack 
Times Square http://t.co/tvYqYbsK0o 

• Just A Taco in the City ya Know #TimeSquare#DallasBBQ @ Dallas 
BBQ http://t.co/hyCNkpSrSd 

• Craving a lobster roll, aka I must get to RI NOW. 
• Rainbow Set Sushi dulu dan menikmati midtown manhattan sebelum 

kembali ke??? (at Wasabi Sushi & Bento) https://t.co/uC9rt8yCoC 
• Pork carnitas tacos & blood orange margaritas w my favorite rican @ 

Lucys Cantina

(c) NY non-event: having food aroun the Time Square.

Figure 6: Example geo-topic clusters detected on NY.�e �rst two

are classi�ed as positive local events; while the third as negative.

cluster is of high quality — the tweets in each cluster are highly
geographically compact and semantically coherent. Even if there
are tweets discussing about the event with di�erent keywords (e.g.,
‘shoot’, ‘justice’, and ‘protest’), TrioVecEvent can group them into
the same cluster. �is is because the multimodal embeddings can
e�ectively capture the subtle semantic correlations between the
keywords. While the �rst two clusters are classi�ed as true local
events by TrioVecEvent, the last one in Figure 5(c) is marked
as negative. Although the last one is also a meaningful geo-topic
cluster, it re�ects routine activities around the long beach instead
of any unusual events. TrioVecEvent is able to capture this fact
and classify it into the negative class.

Figure 6(a) and 6(b) show two example local events detected by
TrioVecEvent on NY. �e �rst is the Hoboken Arts and Music
Festival; and the second is the basketball game between the Knicks
and the Hawks. Again, we can see the member tweets are highly
relevant both geographically and semantically. As they represent
interesting and unusual activities in their respective areas, TrioVe-
cEvent successfully classi�es them as true local events. In contrast,
the third cluster just re�ects the everyday activity of having food
around the Time Square, and is returned as a non-event.

To further understand why TrioVecEvent is capable of gen-
erating high-quality geo-topic clusters and eliminating non-event
candidates, we can re-examine the cases in Figure 1. As shown,
the retrieved results based on the learned embeddings are highly
meaningful. For instance, given the query ‘beach’, the top locations
are all beach-life areas in LA and NYC; given the location of the
airport, the top keywords re�ect typical �ight-related activities

around the airport; and given di�erent keywords as queries, the
retrieved keywords are semantically relevant. Such results explain
why TrioVecEvent is capable of grouping relevant tweets into the
same geo-topic cluster and why the embeddings can serve as useful
knowledge for extracting discriminative features (e.g., spatial and
temporal unusualness, semantic concentration).

6.3 �antitative Results

6.3.1 E�ectiveness Comparison. Table 2 reports the precision,
pseudo recall, and pseudo F1 of all the methods on LA and NY.
We �nd that TrioVecEvent signi�cantly outperforms the baseline
methods on both data sets. Compared with the strongest baseline
GeoBurst+, TrioVecEvent yields around 118% improvement in
precision, 26% improvement in pseudo recall, and 66% improve-
ment in pseudo F1-score. �e huge improvements are a�ributed to
the two advantages of TrioVecEvent: (1) the embedding-based
clustering model capture short-text semantics more e�ectively, and
generate high-quality geo-topic clusters to achieve a good cover-
age of all the potential events; and (2) the multimodal embeddings
enable the classi�er to extract discriminative features for the candi-
dates, and thus accurately pinpoint true local events.

Comparing GeoBurst and its upgraded version GeoBurst+, we
�nd that GeoBurst+ outperforms GeoBurst by a considerable
margin. Such a phenomenon further veri�es that classi�cation-
based candidate �ltering is superior to the ranking-based strategy,
even with moderately-sized training data. EvenTweet performs
much poorer than the other methods on our data. A�er investi-
gating the results, we �nd that although EvenTweet can extract



Table 2: �e performance of di�erent methods. ‘P’ is precision, ‘R’

is pseudo recall; and ‘F1’ is pseudo F1 score.

Method LA NY

P R F1 P R F1
EvenTweet 0.132 0.212 0.163 0.108 0.196 0.139
GeoBurst 0.282 0.451 0.347 0.212 0.384 0.273
GeoBurst+ 0.368 0.483 0.418 0.351 0.465 0.401

TrioVecEvent 0.804 0.612 0.695 0.765 0.602 0.674

spatiotemporally bursty keywords in the query window, cluster-
ing these keywords merely based on the spatial distributions o�en
leads to semantically irrelevant keywords in the same cluster, which
yields suboptimal detection accuracies.

6.3.2 E�iciency Comparison. We proceed to report the e�ciency
of di�erent methods. Since the time cost of GeoBurst+ is almost
the same as GeoBurst, we only show the cost of GeoBurst for
brevity. First, we study the convergence rate of the Gibbs sampler
for the Bayesian mixture model. For this purpose, we randomly
select a three-hour query window, and apply the Bayesian mixture
model for extracting geo-topic clusters in the query window. Fig-
ure 7(a) shows the log-likelihood as the number of Gibbs sampling
iterations increases. We observe that the log-likelihood quickly
converges a�er a few iterations. Hence, it is usually su�cient to
set the number of iterations to a relatively small value (e.g., 10) in
practice for be�er e�ciency.
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Figure 7: E�ciency study on LA. Figure 7(a) shows the convergence

rate of the Bayesian mixture model; Figure 7(b) shows the summa-

rization throughputs forGeoBurst and TrioVecEvent; Figure 7(c)

shows the cost of online clustering; and Figure 7(d) shows the cost

of candidate �ltering.

Both GeoBurst and TrioVecEvent require summarizing the
continuous tweet stream for obtaining background knowledge: the
summarization of GeoBurst is done by extending the Clustream

algorithm [2]; while that of TrioVecEvent is achieved with mul-
timodal embedding. In this set of experiments, we compare the
throughputs of the summarization modules in these two methods.
Speci�cally, we apply the two methods to process LA and record
the accumulated CPU time for summarization in the process. As
depicted in Figure 7(b), the summarization of both methods scales
well with the number of tweets, and TrioVecEvent is about 50%
faster than GeoBurst. Meanwhile, we observe that the embedding
learner scales roughly linearly with the number of processed tweets,
making it suitable for large-scale tweet streams.

Now we investigate the e�ciency of online clustering and can-
didate �ltering for di�erent methods. To this end, we randomly
generate 1000 3-hour query window, and continuously shi� each
query window on a basis of 1, 2, . . ., 10 minutes. In Figure 7(c),
we report the averaged running time of di�erent methods in terms
of the number of new tweets. As shown, both GeoBurst and
TrioVecEvent are much more e�cient than EvenTweet, while
GeoBurst is the fastest. In terms of candidate �ltering, Figure 7(d)
reports the running time of the three methods as the query win-
dow length changes. Among the three methods, TrioVecEvent
achieves the best e�ciency for candidate �ltering. �is is because
TrioVecEvent needs to extract only a small set of features for
candidate classi�cation. With the learned multimodal embeddings,
all of the features are quite cheap to compute.

6.3.3 Feature Importance. Finally, we measure the importance
of di�erent features for candidate classi�cation. Our measurement
is based on the Random Forest Classi�er, by computing how many
times a feature is used for dividing the training samples in the
learned tree ensemble. Figure 8 plots the normalized fractions of
all the features, where larger values indicate higher importance. As
shown, the spatial concentrations turn out to be the most important
features on both data sets. �is is expected, as a local event usually
occurs at a speci�c point-of-interest, resulting in a geo-topic cluster
that is spatially compact. �e unusualness measures also serve as
important indicators for the classi�er, which clearly shows that the
embeddings serve as useful knowledge for distinguishing unusual
events from routine activities. �e other four features (burstiness,
semantic concentration, spatiotemporal unusualness, and temporal
concentration) act as useful indicators as well, receiving consider-
able weights for candidate classi�cation.
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Figure 8: �e importance of di�erent features for candidate classi-

�cation on LA and NY.



7 CONCLUSION

We have proposed the TrioVecEvent method to enable accurate
online local event detection in continuous geo-tagged tweet streams.
With the multimodal embeddings of the location, time, and text,
TrioVecEvent �rst obtains quality geo-topic clusters in the query
window to ensure a high coverage of the underlying events. It then
extracts a set of features to characterize the candidates, such that
the true local events can be accurately identi�ed. Our extensive
experiments have demonstrated that TrioVecEvent improves the
accuracy of the state-of-the-art method signi�cantly while achiev-
ing good e�ciency. In the future, we are interested in extending
the method for assigning true local events into �ne-grained types,
thus allowing the end users to take di�erent actions for di�erent
event types.
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