Multi-head or Single-head? An Empirical Comparison for Transformer Training

Abstract

Multi-head attention plays a crucial role in the recent success of Transformer models, which leads to consistent performance improvements over conventional attention in various applications. The popular belief is that this effectiveness stems from the ability of jointly attending multiple positions. In this paper, we first demonstrate that jointly attending multiple positions is not a unique feature of multi-head attention, as multi-layer single-head attention also attends multiple positions and is more effective. Then, we suggest the main advantage of the multi-head attention is the training stability, since it has less number of layers than the single-head attention, when attending the same number of positions. For example, 24-layer 16-head Transformer (BERT-large) and 384-layer single-head Transformer has the same total attention head number and roughly the same model size, while the multi-head one is significantly shallower. Meanwhile, we show that, with recent advances in deep learning, we can successfully stabilize the training of the 384-layer Transformer. As the training difficulty is no longer a bottleneck, substantially deeper single-head Transformer achieves consistent performance improvements without tuning hyper-parameters.

Publication
arXiv:2106.09650 [cs]
Avatar
Liyuan Liu
Senior Researcher @ MSR

Understand the underlying mechanism of pretraining heuristics.