Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu , Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan Wang , Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou
(2024).
Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone.
arXiv:2404.14219 [cs].
Chengyu Dong, Liyuan Liu , Hao Cheng, Jingbo Shang, Jianfeng Gao, and Xiaodong Liu
(2023).
Fast-ELECTRA for Efficient Pre-training.
Proceedings of the Twelfth International Conference on Learning Representations (ICLR 2024).
Suyu Ge, Yunan Zhang, Liyuan Liu , Minjia Zhang, Jiawei Han, and Jianfeng Gao
(2023).
Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs.
Proceedings of the Twelfth International Conference on Learning Representations (ICLR 2024). Outstanding Paper Honorable Mention.
Liyuan Liu , Chengyu Dong, Xiaodong Liu, Bin Yu, and Jianfeng Gao
(2023).
Bridging Discrete and Backpropagation: Straight-Through and Beyond.
Proceedings of the Proceeding of Thirty-seventh Annual Conference on Neural Information Processing Systems (NeurIPS 2023). Selected as Oral.
Honglei Zhuang, Fang Guo, Chao Zhang, Liyuan Liu , and Jiawei Han
(2020).
Joint Aspect-Sentiment Analysis with Minimal User Guidance.
the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2020).
Liyuan Liu , Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han
(2020).
Understanding the Difficulty of Training Transformers.
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020). Selected as Oral.
Liyuan Liu , Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han
(2020).
On the Variance of the Adaptive Learning Rate and Beyond.
the Eighth International Conference on Learning Representations (ICLR 2020).
Zihan Wang*, Jingbo Shang*, Liyuan Liu* , Lihao Lu, Jiacheng Liu, and Jiawei Han
(2019).
CrossWeigh: Training Named Entity Tagger from Imperfect Annotations.
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP 2019).
Liyuan Liu , Jingbo Shang, Xiang Ren, Frank Fangzheng Xu, Huan Gui, Jian Peng, and Jiawei Han
(2018).
Empower Sequence Labeling with Task-Aware Neural Language Model.
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI 2018)..
Carl Yang, Liyuan Liu , Mengxiong Liu, Zongyi Wang, Chao Zhang, and Jiawei Han
(2017).
Graph Clustering with Embedding Propagation.
the 2020 IEEE International Conference on Big Data (IEEE BigData 2020).